Ud. está en: Contenidos > Impacto Ambiental> Gestión ambiental en el feedlot> 06. Pautas para la habilitación y el control pública

06. Pautas para la habilitación y el control pública

Fecha de Publicación: 2/3/2012

Pautas para la habilitación y el control público

 

5. Pautas para habilitación y el control público de la gestión ambiental

El control de la gestión ambiental del feedlot debería ser de interés de la empresa y del sector público. El sector público debería generar la legislación correspondiente para el control de una buena gestión ambiental. En ese sentido, sin excluir pautas particulares de cada administración, se propone a continuación el siguiente procedimiento:
Utilizar en primer término como guía para la determinación de la factibilidad de la instalación de feedlots las pautas sugeridas en el Cuadro 5.1 (pg. 90), teniendo en cuenta principalmente el criterio de reversibilidad u oportunidad de corrección de las condiciones de alta vulnerabilidad que son independientes de la escala (dimensión) del feedlot. Seguidamente, se debería tener en cuenta la escala para definir le grado de detalle del control de gestión.
El cuadro 5.1 propone la clasificación en tres categorías (A = feedlot con capacidad para engorde simultáneo igual o menos de 1000 animales , B = capacidad entre 1000 y 5000, C = más de 5000). En el cuadro se indica con un punto la información o documentación a proveer por las empresas para cumplimentar pautas mínimas para definir la vulnerabilidad del sitio y su control posterior.
Los feedlots tipo A tendrían menos exigencias en cuanto a la información a proveer para su inscripción y posterior monitoreo que los de tipo B o C. Las exigencias para los de tipo A estarían restringidas a su ubicación física y potenciales riesgos de contaminación de recursos hídricos. La información a requerir a las empresas sería del tipo descriptivo de aspectos esenciales que hacen a la vulnerabilidad del sitio. Debido a la magnitud de la escala no sería necesario proveer planos y programas de manejo y monitoreo.
Sin embargo, el nivel de exigencias podría verse incrementado si el número de feedlots y la cercanía entre ellos incrementan el riesgo de una cuenca, recursos hídricos, región, etc. Provista la información requerida y verificada la ausencia de conflictos entre la normativa y el proyecto, se registraría el feedlot y otorgaría una habilitación permanente.
Las exigencias para los de tipo B crecen en = grado de detalle para calificar la vulnerabilidad del sitio, con sus posibles efectos regionales. Surge como demanda explícita el planteo del manejo y uso de efluentes. Adicionalmente, se sugiere que el agente de control proponga un programa de monitoreo de calidad de aguas a realizar con carácter preventivo.
Al igual que en el caso anterior, provista la información pertinente y verificada la ausencias de conflictos con la normativa
legal se procedería al otorgamiento de una licencia permanente.
Por último, los de tipo C deberían proveer información detallada de ubicación a nivel de predio y región (planos e imágenes satelitales), de diseño de instalaciones y programas para el manejo y el uso de efluentes y estiércol. Para su mejor organización y gestión posterior, sería conveniente que para el otorgamiento del permiso o licencia a este tipo de feedlot, la autoridad competente elabore un protocolo a seguir para la instalación y operación de feedlots tipo C, que permita a las empresas cumplimentar en el tiempo las pautas para una adecuada gestión ambiental. Dicho protocolo debería incluir los tiempos y formatos para la presentación y posterior aprobación incluyendo los proyectos o programas de:
a) Ubicación e instalaciones,
b) Estructura de captura, procesamiento y almacenamiento de líquidos y estiércol,
c) Información y capacitación del personal,
d) Programa de monitoreo de aguas subterráneas y escurrimiento,
d) Programa de uso de efluentes líquidos y estiércol,
e) Eliminación de animales muertos y residuos peligrosos.
Cada proyecto será un requisito parcial para el otorgamiento definitivo de la licencia de operación. Los cuatro primeros deberían ser la condición principal para el inicio de las actividades y el otorgamiento de una licencia provisoria. Al cabo de dos años la empresa deberá presentar y alcanzar la aprobación de los otros dos para completar su licencia definitiva.
El programa de monitoreo implica la presentación anual de análisis de calidad de aguas en el área del feedlot y sectores de almacenamiento de efluentes. Para dicho programa, la administración pública deberá proveer pautas para su diseño y seguimiento. Habiéndose aprobado el sitio y habilitado el diseño, el monitoreo debería tener un rol preventivo para proponer ajustes o adecuaciones de estructura y no sería de carácter punitivo.
Finalmente, las licencias deberían ser revocables si el agente de control detectara procesos de deterioro ambiental de naturaleza irreversible o anormalidades en la gestión que no se condice con los procesos pautados en los programas de uso y monitoreo previstos. La revocación y suspensión de licencias deberá seguir un procedimiento desarrollado por la autoridad competente. La instancia de la revocación definitiva de la licencia debería abordarse cuando se han agotado las instancias de reversión de efectos o daños y la adecuación de las instalaciones o procesos.



Bibliografía

Ames, D.R., S.E. Curtis, D. Polin, G.L. Hahn, B.A. Young y R.E. McDowell. 1981. Effect of Environment on Nutrient Requirements of Domestic Animals. National Academy Press. Washington, D.C.

Algeo JW, Elam CJ, Martinez A y Westing T. 1972. Feedlot air, water, and soil analysis: Bulletin D, How to Control Feedlot Pollution. California Cattle Feeders Association, Bakersfield, CA.

Amosson SH, Sweeten JM y Weinheimer B. 1999. Manure handling characteristics of high plains feedlots. Special Report. Texas Agricultural Extension Service, Amarillo, TX.

Arrington RM y Pachek CE. 1981. Soil nutrient content of manures in an arid climate. Conference on Confined Animal Production and Water Quality. GPAC Publication 151. Great Plains Agricultural Council, Denver, CO. pp 259—266.

ASAE (American Society of Agricultural Engineers). 1988. Manure production and characteristics. ASAE D-384-1. American Society of Agricultural Engineers, St. Joseph, MI.

Barrington, SF y Jutras PJ. 1983. Soil sealing by manure in various soil types. Paper 83—4571. American Society of Agricultural Engineers, St. Joseph, MI.

Butchbaker, AF 1973. Feedlot runoff disposal on grass or crops. L-1053. Texas Agricultural Extension Service, Texas A&M University DPE-752 I, Great Plains Beef Cattle Feeding Handbook, Amarillo.

Clark RN. 1975. Seepage beneath feedyard runoff catchments. In: Managing Livestock Wastes, Proceedings of the Third International Symposium on Livestock Wastes. American Society of Agricultural Engineers, St. Joseph, MI, pp 289—925.

Clark RN, Gilbertson CB y Duke HR. 1975a. Quantity and quality of beef feedyard runoff in the Great Plains. In: Managing Livestock Wastes, Proceedings of the third International Symposium on Livestock Wastes. American Society of Agricultural Engineers, St. Joseph, MI, pp 429—431.

Clark RN, Schneider AD, Stewart BA 1975b. Analysis of runoff from southern Great Plains feedlots. Trans ASAE 15(2):3l9-.322.

Coleman, EA, Grub W, Albin, RC, Meenaghan GF, Wells DM. 1971. Cattle feedlot pollution study—interim report no. 2. WRC-71-2. Water Resources Center, Texas Tech University, Lubbock, TX.

Dantzman, CL, Richter MF y Martin FG. 1983. Chemical elements in soils under cattle pens. 3 Environ Qual 12(2):164—168.

Elliott, LF, McCalla TM, Mielke LN, Travis TA. 1972. Ammonium, nitrate and total nitrogen in the soil water of feedlot and field soil profiles. Appl Microbiol 23:810—813.

Gilbertson, CB, Clark RN, Nye JC y Swanson NP. 1980. Runoff control for livestock feedlots: state of the art. Trans ASAE 23(5):1207—1212.

Gilbertson, CB, Nienaber JA, IL Gartrung JA, Ellis JR. y Splinter WE. 1979a. Runoff control comparisons for commercial beef feedlots. Trans ASAE 22(4):842—849.

Gilbertson, CB, Nye JC, Clark RN y Swanson NP. 1981 Controlling runoff from feedlots— a state of the art. Ag Info Bulletin 441. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC.

Jones, OR, Willis WM, Smith SJ y Stewart BA. 1995 Nutrient cycling of cattle feedlot manure and composted manure applied to southern high plains drylands.

In: Steele K (ed) Animal Waste and the Land-Water Interface. Proceedings of Animal Waste in the Land-Water Interface Conference, Fayetteville, AR, July 16—19. Lewis, Baton Rouge, pp 265—272.

Lehman, OR y Clark RN. 1975. Effect of cattle feedyard runoff on soil infiltration rates. J Environ Qual 4(4):437—439.

Lehman, OR, Stewart BA y Mathers AC. 1970. Seepage of feedyard runoff water im pounded in playas. MP-944. Texas Agricultural Experiment Station, Texas A&1 University, College Station, TX.

Lott, SC, Watts PJ y Burton JR. 1994b. Runoff from Australian cattle feedlots. In: Balancing Animal Production and the Environment, Proceedings, Great Plains Animal Waste Conference on Confined Animal Production and Water Quality.

GPAC Publication 151. Great Plains Agricultural Council, Denver, CO. pp 47—53.

Lott, SC, Powell E y Sweeten JM. 1994a. Manure collection, storage and spreading. In: Watts PJ, Tucker R (eds) Designing Better Feedlots. Queensland Department of Pri mary Industries, Toowoomba, Queensland, Australia.

Loudon, TL, Jones DD, Peterson JB, Backer LF, Bragger MF, Converse JC, Fulhage CD, Lindley JA, Melvin SW, Person HL, Schulte DD y White RK 1985. Livestock Waste Facilities Handbook. MWPS-l 8, 2nd Ed. Midwest Plan Service, Iowa State Univer sity, Ames, IA, pp 2.1—2.2; 5.1—5.9.

Marek, TH, Harman WL y Sweeten JM 1994. Irrigation and runoff water quality implica tions of high load, single frequency (HLSF) applications of feedlot manure. In: Balancing Animal Production and the Environment, Proceedings, Great Plains Animal Waste Conference on Confined Animal Production and Water Quality. GPAC Publi cation 151. Great Plains Agricultural Council, Denver, CO. pp 199—124.

Marek, TM, Harman WL y Sweeten JM 1995. Infiltration and water quality inferences of high load, single frequency HLSF) applications of feedlot manure. In: Proceedings, Innovations and New Horizons in Livestock and Poultry Manure

Management, Vol. 1, September 6—7, 1995, Austin, Texas. Texas Agricultural Extension Service and Texas Agricultural Experiment Station, College Station, TX, pp 162—169.

Mathers, AC y Stewart BA. 1971. Crop production and soil analysis as affected by application of cattle feedlot waste. In: Livestock Waste Management, Proceedings of the Second International Symposium on Livestock Wastes. American Society of Agricul tural Engineers, St. Joseph, MI, pp 229—231, 234.

Mathers, AC y Stewart BA. 1981. The effect of feedlot manure on soil physical and chemical properties. In: Livestock Waste: A Renewable Resource, Proceedings of the Fourth International Symposium on Livestock Waste, 1980. American Society of Agricultural Engineers, St. Joseph, MI, pp 159—162.

Mathers, AC y Stewart BA. 1984. Manure effects on crop yields and soil properties. Trans ASAE 27(4): 1022—1026.

Mathers AC, Stewart BA y Thomas JD. 1975. Residual and annual rate effects of manure on grain sorghum yields. In: Managing Livestock Wastes, Proceedings of the Third International Symposium on Livestock Wastes, 1975. American Society of Agricul tural Engineers, St. Joseph, MI.

Mathers AC, Stewart BA, Thomas JD y Blair BJ. 1973. Effects of cattle feedlot manure on crop yields and soil conditions. Technical Report 11. USDA Southwestern Great Plains Research Center, Bushland, TX.

Mathers AC, Thomas JD, Stewart BA y Herring JE. 1980. Manure and inorganic fertilizer effects on sorghum and sunflower growth on iron-deficient soil. Agron J 72:1025— 1029.

Mielke LN y Mazurak AP. 1976. Infiltration of water on a cattle feedlot. Trans ASAE 19(2):34l —344.

Mielke LN, Swanson NP y McCalla TM. 1974. Soil profile conditions of cattle feedlots. i Environ Qual l3(1):14—17.

Miller WD. 1971. Infiltration rates and groundwater quality beneath cattle feedlots, Texas high plains. Final Report 16060 EGS. Water Quality Office, U.S. Environmen tal Protection Agency, Washington, DC.

Nienaber JA, Gilbertson CB, Klopfenstein TJ, Palm SD y McCalla TM. 1974. Animal performance and lot surface conditions as affected by feedlot slope and animal densities. In: Proceedings, International Livestock Environment Symposium, Lincoln, NE, pp 130—137.

NSW Agriculture, 1998. The New South Wales feedlot manual. The Inter-Department Committee on Intensive Animal Industries (Feedlot Section) (2nd ed.): Update 98/I.

Phillips PA y Culley JLB. 1985. Groundwater nutrient concentrations below small-scale earthen manure storage. In: Agricultural Waste Utilization and Management, Proceedings of the Fifth International Symposium on Agricultural Wastes
American Society of Agricultural Engineers, St. Joseph, MI, pp 672—679.

Phillips RL. 1981. Maps of runoff volumes from feedlots in the United States. In: Live stock Waste: A Renewable Resource, Proceedings of the Fourth International Sympo sium on Livestock Waste. American Society of Agricultural Engineers, St. Josepk, MI, pp 274—277.

Powell EE. 1994. Economic management of feedlot manure. Final Report, Parr. 2. Evan Powell Rural Consultants, Dalby, Queensland, for Meat Research Corporation con tract M.087, Sydney, NSW, Australia.

Powers WL, Herpich RL, Murphy LS, Whitney DA, Manges HL y Wallingford GW. 1973. Guidelines for land disposal of feedlot lagoon water. C-485. Cooperative Ex tension Service, Kansas State University, Manhattan, KS.

Schuman GE y McCalla TM 1975 Chemical characteristics of a feedlot soil profile. Soil Sci 119(2):113—118.

Shuyler LR, Farmer DM, Kreis RD y Hula ME. 1973. Environment protecting concepts of beef cattle feedlot wastes management. National Environmental Research Center, Office of Research and Development, U.S. Environmental Protection Agency, Cor vallis, OR.

Smith Si, Sharpley AN, Stewart BA, Sweeten JM y McDonald T. 1994. Water quality implications of storing feedlot waste in southern Great Plains playas. In: Balancing Animal Production and the Environment, Proceedings, Great Plains Animal Waste Conference on Confined Animal Production and Water Quality. GPAC Publication 151. Great Plains Agricultural Council, Denver, CO. pp 267—270.

Swanson NP, Lorimor JC y Miejke LN. 1973. Broad basin terraces for sloping cattle feedlots. Trans ASAE 16(4):746—749.

Swanson NP, Mielke LN y Ellis JR. 1977. Control of beef feedlot runoff with a waterway. ASAE Paper 77-4580. American Society of Agricultural Engineers, St. Joseph, MI.

Sweeten JM. l988a. Composting manure and sludge. L-2289. Texas Agricultural Extension Service, Texas A&M University, College Station, TX.

Sweeten JM. 1988b. Groundwater quality protection for livestock feeding operations. B- 1700. Texas Agricultural Extension Service, Texas A&M University System, College Station, TX (revised 1992).

Sweeten JM. 1990b. Feedlot runoff characteristics for land application In: Agricultural and Food Processing Wastes, Proceedings of the 6 International Symposium on Agricultural and Food Processing Wastes, Chicago, IL, pp 168—184.

Sweeten JM. l992. Cattle feedlot waste management practices for water and air pollu tion control. B-1671, Texas Agricultural Extension Service, Texas A&M University, College Station, TX.

Sweeten JM y Amosson SB. 1995. Manure quality and economics. In: Total Quality Manure Management Manual. Texas Cattle Feeders Association, Amarillo, TX.

Sweeten JM, Marek TH y McReynolds D. 1995a. Groundwater quality near two cattle feedlots in the Texas high plains. AppI Eng Agric 1 1(6):845

Sweeten JM y Mathers AC. 1985. Improving soils with livestock manure. 3 Soil Water Conserv 40(2):206—2 10.

Sweeten JM y McDonald RP. 1979. Results of TCFA environmental and energy survey— 1979. Texas Cattle Feeders Association, Amarillo, TX.

Sweeten JM, Pennington HD, Seale D, Wilson R, Seymour RM, Wyatt AW, Cochran IS y Auvermann BW. 1990. Well water analysis from 26 cattle feedyards in Castro, Deaf Smith, Parmer, and Randall counties, Texas. Texas Agricultural Extension Ser vice, Texas A&M University System, College Station, TX.

Sweeten JM, Safley LM y Melvin SW. 1981. Sludge removal from lagoons and holding ponds: case studies. In: Livestock Waste: A Renewable Resource, Proceedings of the Fourth International Symposium on Livestock Wastes. American Society of Agricul tural Engineers, St. Joseph, MI, pp 204—210.

Sweeten JM y Wolfe ML 1994 Manure and Wastewater Management Systems for Open Lot daiiy operations. Trans. ASAE 37(4):l 145—1154.

Sweeten JM. 1976. Dilution of feedlot runoff. MP-1297. Texas Agricultural Extension Service, Texas A&M University, College Station, TX.

Sweeten JM. 1979. Manure management for cattle feedlots. L-1094. Texas Agricultural Extension Service, Texas A&M University, College Station, TX.

Sweeten JM. 1984. Utilization of cattle manure for fertilizer. In: Baker FH, Miller ME (eds) Beef Cattle Science Handbook, Vol. 20. Westview Press, Boulder, CO. pp 59-74.

Sweeten JM, Parnell CB, Shaw 8W y Auvermann BW. 1998. Particle size distribution of cattle feedlot dust emissions. Trans ASAE 41(5): 1477—1481.

Sweeten JM, Sokora GL, Seymour RM, Hickey MG, Young SM. 1995b. Irrigation of cattle feedlot runoff on winter wheat (extended abstract). In: Proceedings, Animal Waste and the Land-Water Interface Conference. University of Arkansas Water Re sources Center, Fayetteville, AR, pp 14—16.

TNRCC . 1995. Concentrated animal feeding operations. Control of certain activities by rule. Texas Natural Resources Conservation Commis sion. Tex Reg June 30, 20(50):4727—4742.

TWC (Texas Water Commission). 1987. Control of certain activities by rule. Chapter 321, Texas Natural Resources Conservation Commission. Tex Reg March 17, 20(50):904—909.

U.S. Environmental Protection Agency. 1973 Development document for proposed effluent limitations guidelines and new source performance standards for the feedbots point source category. EPA-440/1-731004. EPA, Washington, DC, pp 59—64.

U.S. Environmental Protection Agency. 1993. National pollutant discharge elimination system general permit and reporting requirements for discharges from concentrated animal feeding operations. Fed Reg, February 8, pp 7610— 7644.

Walker J. 1995. Seepage control from waste storage ponds and treatment lagoons. In: Proceedings, Innovations and New Horizons in Livestock and Poultry Manure Management Conference, Vol. 1, September 6—7, 1995, Austin, Texas.

Texas Agricultural Extension Service and Texas Agricultural Experiment Station, Texas A&M Univer sity System, College Station, TX, pp 70—78.

Wallingford GW, Murphy LS, Powers WL, Manges HL 1974 Effect of beef feedbot lagoon water on soil chemical properties—growth and composition of corn forage. J Environ Qual 3(1):74—78.

Watts PJ, Jones M, Lott SC, Tucker RW y Smith RJ. 1992. Odor measurement at a Queensland feedlot. ASAE Paper 92-4516. Presented at the International Winter Meeting of the American Society of Agricultural Engineers, Nashville, TN, December 15—17.

Wells DM, Coleman EA, Grub W, Albin RC y Meenaghan GF. 1969. Cattle feedlot pollution study—Interim Report No. 1. WRC-69-7. Water Resources Center, Texas Tech University, Lubbock, TX.

Wiese AF, Sweeten JM, Bean BW, Salisbury CD y Chenault EW. 1998. High temperature composting of cattle feedlot manure kills weed seeds. Appl Eng Agric 14(4):377—380.

Watts PJ y Tucker RW. 1993a. The creation and reduction of odour at feedlots. Workshop on Agricultural Odours, Australian Water and Wastewater Association and Clean Air Society of Australia and New Zealand, pp 3.1—3.14.

Watts PJ y Tucker RW. 1993b. The effect of ration on waste management and odor control in feedlots. In: Recent Advances in Animal Nutrition in Australia, 1993.

University of New England, Armidale, NSW, pp 117—129.

Aníbal J. Pordomingo
INTA Anguil

Agradecimientos:
El autor agradece los aportes de información y la crítica del Dr. Ernesto Viglizzo
(Coordinador del Programa Nacional de Gestión Ambiental de INTA)